CAPSTONE PROJECT PROPOSAL GUIDELINES

Virginia Tech’s Computational Modeling and Data Analytics (CMDA) Program invites proposals for its Capstone projects course (CMDA 4864), a required senior-level class for CMDA majors.

In the Capstone projects course, teams of three to five students spend the semester tackling an open-ended, client-driven project. Each team works on a different problem, so the class benefits from seeing the particular challenges that arise in a variety of projects. In addition to the technical aspects of the project, students are mentored in teamwork, project management, professional conduct, and technical leadership. Through the lens of their particular projects, the teams also consider the ethical aspects of data science and mathematical modeling.

The CMDA Program seeks partners from business, government, and academia to serve as sponsors for our capstone projects. These projects should not be theoretical research projects within statistics or applied mathematics, but could be inspired by research questions from other disciplines (e.g., using data science to illuminate research questions in engineering, finance, the humanities, or public health).

A sponsorship donation of $5000 per project is requested. The resources will contribute toward team needs (e.g., software, supplies) and class expenses, and support the CMDA major. Donations will be solicited after the sponsor’s project has been assigned to a team.

Proposals for Fall 2024 projects, including multi-semester projects to begin during Fall 2024, should be submitted by Monday, July 29, 2024. Project proposals for the Spring 2025 semester may be submitted anytime up to Monday, January 6, 2025. To propose a project, please complete this short form:

https://virginiatech.questionpro.com/CMDA-Capstone-Project-Proposal

If you have questions or would like to discuss potential project ideas, please contact Prof. Frederick Faltin (ffaltin@vt.edu) or Dr. Angela Patterson (angela.patterson@vt.edu), co-Directors of the CMDA Capstone Program.

PROPOSAL ELEMENTS (COLLECTED BY THE FORM LINKED ABOVE)

1. **Project Sponsor.** List the sponsoring organization and the individual point of contact.

2. **Contact Details.** List email and phone contact information for the primary client.

3. **Project Summary.** Give a concise (1–2 sentence) summary of the project (i.e., the “question” or “challenge” referred to below).

4. **Project Description.** Provide additional details about the project via Word or PDF upload. This description (200–300 words is ideal) should address the following elements. (a) Elaborate on the question or challenge. Provide an initial estimate of scope. (b) Why is the project important to your organization? (c) What data sets or existing models, if any, can you provide to the team? (d) What prior work has been done on this subject?

5. **Expectations.** Describe what you expect from a successful project. Beyond the final project report and presentation, do you seek any other outcomes or deliverables?

6. **Special Requirements or Constraints.** Do the students require special skills (e.g., facility with a specific programming language or software platform; background in biology, economics, etc.)? Will students need to sign a Non-Disclosure Agreement, conform to HIPAA restrictions, meet citizenship requirements, or have restricted access to your data?
BACKGROUND ON THE CAPSTONE COURSE

When developing project proposals, the following background might be helpful.

• **A Question or Challenge.** Many of the best projects start with a concise question. “How should we best deploy medical workers to reach the population of Malawi?” “How many Americans died from the Russian flu epidemic in 1889 – 1890?” “Can we identify a tuberculosis bacterium in an image of a sputum sample?” “What is the economic impact of open-source software?” Others start with an open-ended challenge. “Develop an algorithm to advise students how to choose among campus dining options according to personal food preferences and daily dietary targets.” (*Projects should not be prescriptive about methodology.* For example, the instruction to “Use support vector machines to classify this brain tumor data set” would not give the team sufficient freedom to identify, assess, and select a solution strategy.)

• **Scale.** The projects should be scaled to a level where a team of 3–5 students can make significant progress over a one semester (3 credit-hour) class with good likelihood of arriving at some definitive result. Successful projects might well spin off into new projects for subsequent semesters. Multi-semester project sequences might explore different facets of a problem or issue, or build upon a prior semester team’s work.

• **Scope.** The projects should lend themselves to several different potential solution strategies. Each team will (a) develop project requirements, in consultation with the client; (b) brainstorm modeling/analysis solutions; (c) score how the solutions meet requirements; (d) select the most suitable solution; (e) implement the solution; (f) present their solution to the client. The teams’ formal assignments due throughout the semester will follow these planning/decision points.

• **Background and Data.** The client should provide the team with background knowledge about the problem, and guide them toward accessing representative data. Data might be incomplete and messy; the teams anticipate some nontrivial data cleaning. The data may be acquired by the team from publicly available sources, or provided by the client. In the latter case, the client might wish to anonymize data before distributing it to the team, or require the team to sign a nondisclosure agreement to handle proprietary data.

• **Client Meetings.** The client should be available to meet with the team at least once every two weeks (typically virtually). Scheduling weekly meetings is preferred, on the understanding that such meetings might sometimes be unnecessary and therefore deferred. Should the team drift off track or fail to produce timely results, the client should point this out to the team and notify the course instructors.

• **CMDA Mentor Meetings.** In addition to the client, each team will be assigned a coach from among the course instructional staff. The teams may also identify a mentor within the community of CMDA faculty and graduate students as circumstances warrant. In such cases, the team may seek out this mentor periodically for technical insight to support the solution strategy. While the team’s coach and mentor can point the team toward techniques, algorithms, or software, they should not participate in the project at a deeper level.

• **Final Presentation.** At the end of the semester, each team will summarize their findings in a 15-minute class presentation. Clients are invited to attend these presentations, and/or ask the team to repeat the presentation for the client’s organization.

• **Final Report.** Each team will also develop a final report that summarizes their problem-solving process and presents their final results in detail. The team should send the client a copy of this report.

• **Evaluation.** In addition to their written assignments and oral presentations, the teams will also evaluate their teammates’ contributions via the CATME peer-evaluation system. Clients will have an opportunity to provide feedback on team performance to the instructors.
Our Charge to the Students Presented on the First Day of Class

CMDA 4864 • CAPSTONE PROJECT COURSE
CLASS SUMMARY AND SYLLABUS • FALL 2024

The best work in CMDA does not typically begin as beautiful theory developed in vague hope of eventual application: rather, some problem (rooted in engineering, physics, biology, economics, social science, healthcare, finance, business, government, or beyond) needs solving, and the computational scientist selects – or invents – those analytical and computational tools best suited to the challenge at hand.

CMDA 4864 puts an applied problem front-and-center. You will devote the entire semester in pursuit of its solution. You will draw on the breadth of your CMDA education (and other background skills) to find the proper tools, learning new techniques as the challenge demands. Your problem will be neither clean nor simple; there is no answer in the back of some book. Yet you will not be alone in this process: you will work in a team, ideally with students possessing complementary strengths. The client for your project will help your team understand the essential goals, just as a wide range of Virginia Tech faculty experts can provide valuable insight as you pursue a solution.

In this course, you will obtain hands-on experience in structured problem solving and project management. We organize our work around a methodical project management paradigm, a procedure for identifying requirements, brainstorming solutions, rationally selecting best strategies among those solutions, and developing viable prototypes. This approach is a classic problem solving paradigm; other strategies exist, of course, but learning this framework – some framework – is helpful.

The clients for our projects come from corporations, non-profits, government agencies, and diverse corners of Virginia Tech. They have high expectations of you. In many cases, this is their first experience working with a CMDA Capstone team: your success will build relationships that will help future CMDA students. A number of our past clients have hired members of the teams they mentored. Sometimes CMDA alumni serve as clients.

You should find this class to be a rich experience that draws together many aspects of your CMDA education, but everything depends on the effort you devote to the project and your generosity as a team member.

The class is taught in person and regular attendance is expected for all students. We will conduct some events virtually, to assure familiarity with various modes of communication. We believe that the mix of in person and online communications will maximize your learning experience, as you prepare to launch careers in leading organizations whose operations will, most likely, mirror these very same modalities in the workplace.

Virginia Tech’s motto is Ut Prosim, which we translate as That I May Serve. More than most courses, Capstone gives you a chance to put our university’s ethos to work in the classroom. Please keep that mentality of service in mind as you collaborate with your team.

Any student with special needs or circumstances requiring accommodation in this course is encouraged to contact the instructors during the first week of class, as well as Virginia Tech’s SSD Office.
We will ensure that these needs are appropriately addressed.

We urge any student who is experiencing food or housing insecurity, or who has a disability that may affect their success in this course, to speak with us at their first opportunity, or to contact the Dean of Students office for support at 540-231-3787.
CLASS POLICIES • FALL 2024

Objectives
CMDA 4864 students learn a methodical process for tackling open-ended application problems. Working in a team, students also address the ethics of data science, leadership, and project management.

Outcomes
Upon completing this course, students should be able to:
1. Express an application problem using mathematical/statistical language;
2. Brainstorm solution approaches and rationally select among them;
3. Implement the solution in thoroughly-tested software;
4. Understand the project’s ethical considerations;
5. Effectively present the project’s outcomes and shortcomings;
6. Exercise project management skills and effectively contribute to a team;
7. Interact with a client and deliver the project’s outcomes.

Meetings
CRN 83080: Tu/Th 12:30 – 1:45 pm in NCB 220
CRN 83081: Tu/Th 3:30 – 4:45 pm in NCB 220
+ Each team must meet with one of the instructors by Wednesday, September 11.
+ Students must attend several evening events:
 - Midterm presentations (tentatively October 15 and 16)
 - Tools & Techniques Workshop (tentatively November 7).

Communication
Course materials and announcements will be distributed via Canvas.

Instructors
Frederick Faltin (ffaltin@vt.edu) and Angela Patterson (anneff@vt.edu)
Office hours as posted on Canvas or by appointment. Please email to set up a time.

GTAs
TBD
The GTAs will also post office hours on Canvas or hold by appointment. Please email to set up a time.

Textbooks
Jordan Ellenberg, How Not to Be Wrong, 2015
Cathy O’Neil, Weapons of Math Destruction, 2017

Grades
20% : Technical memos (four team assignments, evenly weighted)
10% : Individual memos (two assignments, evenly weighted)
15% : Team presentations (three: midterm, tools & techniques, final)
20% : Individual contributions (CATMEs, team participation, client relations, active attendance)
35% : Project results and final report
Scores of at least 90, 80, 70, and 60 guarantee grades of at least A−, B−, C−, and D−.

Grade Policy
Students will be evaluated on their active participation in their teams and with their clients, through graded written and oral assignments throughout the semester, informed by peer assessment and client feedback. Grades are also based on the project’s technical content and communication of that content. Students who do not make a significant contribution to their team will receive an appropriately diminished portion of their team’s grades for technical memos, presentations, and project results and final report. Any student who disengages from class, their sponsor, or his or her team will fail the class.

Honor Code
Most course assignments will be completed in teams: collaboration is essential. Peer evaluations must be conducted honestly. All reference sources must be properly cited. Be honest about limitations of your models and never fake or censor data. In all dealings with peers, clients, and mentors, students must uphold the highest ethical standards. All Capstone assignments are considered “graded work” and are covered by the Honor Code.

The Undergraduate Honor Code pledge that each member of the university community agrees to abide by states: “As a Hokie, I will conduct myself with honor and integrity at all times. I will not lie, cheat, or steal, nor will I accept the actions of those who do.” Students enrolled in this course are responsible for abiding by the Honor Code. A student who has doubts about how the Honor Code applies to any assignment is responsible for obtaining specific guidance from the course instructors before submitting the assignment for evaluation. Ignorance of the rules does not exclude any member of the University community from the requirements and expectations of the Honor Code. Further information about the Honor Code is available at: https://www.honorsystem.vt.edu/.

Absence Policy
Students are expected to attend all classes, actively participate in their groups, and attend team meetings outside of class. Necessary absences should be communicated and approved in advance. Team contributions will be assessed using the CATME peer assessment tool. Absences frequent in number or without prior notice will affect the contribution grade.
CMDA Capstone Project Program
External Partners • Fall 2023 – Spring 2024
Do you want to use data, models, and algorithms to enter the world of big data and computational mathematics?

Blending together statistical techniques, mathematical modeling, and high-performance computing, the CMDA major presents a unique pathway to enter the world of big data and quantitative science.

CMDA courses will teach you how to model the world, how to learn from data, and how to compute fast.

Core Requirements

CMDA Capstone Project Program

External Partners • Fall 2021–Spring 2022

- NASA
- accenture
- BANK OF AMERICA
- DEVCOM
- OCTO
- AEROSPACE
- NIST
- summit
- Pearson
- United States Census Bureau
- METRON
- VIRGINIA Energy
- Sealed Air
- MITRE
- COLGATE-PALMOLIVE
- sociallydetermined
- OZMO
- Anthem
- GE
- GE Aviation
- Lion Federal
- va811.com
- Western Virginia Water Authority
- BLACK BRAND
Do you want to use data, models, and algorithms to enter the world of big data and computational mathematics? Virginia Tech’s B.S. in CMDA will prepare you to do just that. Blending together statistical techniques, mathematical modeling, and high-performance computing, the CMDA major presents a unique pathway to enter the world of big data and quantitative science. CMDA courses will teach you how to model the world, how to learn from data, and how to compute fast.

Core Requirements

CMDA Capstone Project Program

External Partners • Fall 2020–Spring 2021

- MITRE
- Blackstone
- Gates
- OCTO
- COLGATE-PALMOLIVE
- ELDER RESEARCH
- MONARCH WEATHER CONSULTING
- Anthem
- OZMO
- AEROSPACE
- NIST
- Socially Determined
- Lion Federal
- GE Aviation
- NASA
- Heron Systems Inc.
- NTT DATA
- Dun & Bradstreet
- Summit
- va811.com
- REFINE RE
- BenchCore
- d·TECH
- University of Virginia
- BioComplexity Institute
Do you want to use data, models, and algorithms to enter the world of big data and computational mathematics? Virginia Tech's B.S. in CMDA will prepare you to enter the world of big data and quantitative science. Blending together statistical techniques, mathematical modeling, and high-performance computing, the CMDA major presents a unique pathway to enter the world of big data and quantitative science. CMDA courses will teach you how to model the world, how to learn from data, and how to compute fast.
CMDA Capstone Project
Industrial Partners, Fall 2018

- accenture
- Anthem
- Akamai
- OZMO
- OCTO
- MODEA
- LIVING THREADS Co.
- GE Aviation
- SOCIALY DETERMINED
- Blacksburg TRANSIT
- tsi
- MITRE
- Washington Gas
- GENERAL DYNAMICS
 Mission Systems